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1. Introduction 

 

    The aim of this talk is to discuss the singular behaviour of the Laplacian in 

spherical coordinates. Laplacian is encountered almost in all fields of  Theoretical 

physics as well as in mathematical physics. In this article our attention is paid 

mostly to the Schrodinger equation, which in the Cartesian coordinates has a form 

(in units  1c  ) 
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is a Laplacian. 

      In spherical coordinates the variables are separated and the total wave function 

is represented  as 
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   The Laplacian is also rewritten in these coordinates and after the substitution Eq. 

(3) into the Eq. (1) we derive the radial equations  
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    All of this is well known from the classical textbooks on quantum mechanics. 

We display them here for further practical purposes. 

   As is well known, in textbooks two methods are used for the transition from Eq. 

(4) to Eq. (5).  

1. the first is a direct substitution in Eq. (4) of  the  relation  

                            
 u r

R r
r


  

2. the second method represents the operator in parenthesis of Eq.(4)  in the 

following form  
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By unknown reason in both cases the mistake was  made.  

 

My talk is devoted for clearing up this point of view.      

            

   It will be shown below that the status of the Eq.(5) is problematic. 

From both mathematical and physical points of view it is very important that the 

solutions of radial equations be compatible with the full Schrodinger equation 

(1).This is verbaly mentioned in books , not only earlier but also in the modern 

ones [3]. For example,in S.Weinberg”s book “Lectures in Quantum Mechanics” 

 Earlier  P.Dirac [1] wrote: “Our  equations ... strictly speaking, are not 

correct, but the error is restricted by only one  point  0r  .I t is necessary 

perform a special investigation of solutions of wave equations, that are derived by 

using the polar coordinates, to be convince are they valid in the point 0r   

(p.161)” 

We  are sure that mathematicians knew this problem for a long time, but it was not 

discussed  in physical literature.  

 

   The first articles on this subject are: 

1.          On the Boundary conditions for the Radial 
Schrodinger Equation. 
Anzor A. Khelashvili, Teimuraz P. Nadareishvili, (Tbilisi State U. & 
Georgian U. of Patriarchy) . Jan 2010. 4pp.  
e-Print: arXiv:1001.3285 [math-ph]  

LaTeX(US) | LaTeX(EU) | Harvmac | BibTeX  

http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Khelashvili%2C%20Anzor%20A%2E%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Nadareishvili%2C%20Teimuraz%20P%2E%22
http://www.slac.stanford.edu/spires/find/inst/www?icncp=Tbilisi+State+U.
http://www.slac.stanford.edu/spires/find/inst/www?icncp=Georgian+U.+of+Patriarchy
http://www.slac.stanford.edu/spires/find/hep/www?key=8526311&FORMAT=WWWBRIEFLATEX
http://www.slac.stanford.edu/spires/find/hep/www?key=8526311&FORMAT=WWWBRIEFLATEX2
http://www.slac.stanford.edu/spires/find/hep/www?key=8526311&FORMAT=WWWBRIEFHARVMAC
http://www.slac.stanford.edu/spires/find/hep/www?key=8526311&FORMAT=WWWBRIEFBIBTEX
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Abstract and Postscript and PDF from arXiv.org (mirrors: au br cn de es fr il in it jp kr ru 

tw uk za aps lanl )  

Bookmarkable link to this information 

    2.        Unexpected Delta-Function Term in the Radial 
Schrodinger Equation. 

          Anzor A. Khelashvili, Teimuraz P. Nadareishvili, . Feb 2010. 5pp. e-
Print:         

         arXiv:1002.1278 [math-ph]  

LaTeX(US) | LaTeX(EU) | Harvmac | BibTeX  

Abstract and Postscript and PDF from arXiv.org (mirrors: au br cn de es fr il in it jp kr ru 

tw uk za aps lanl )  

Bookmarkable link to this information 

2.       On the Boundary conditions for the Radial 
Schrodinger Equation. 
Anzor A. Khelashvili, Teimuraz P. Nadareishvili, (Tbilisi State U. & 
Georgian U. of Patriarchy) . Jan 2010. 4pp.  
e-Print: arXiv:1001.3285 [math-ph]  

LaTeX(US) | LaTeX(EU) | Harvmac | BibTeX  

Abstract and Postscript and PDF from arXiv.org (mirrors: au br cn de es fr il in it jp kr ru 

tw uk za aps lanl )  

Bookmarkable link to this information 

3.    What is the boundary condition for the reduced radial wave 

function in the Schrodinger equation. 

Anzor A. Khelashvili, Teimuraz P. Nadareishvili, (Tbilisi State U. & 

Georgian U. of Patriarchy) . 

  

 Am. J. Physics., 79,668 (2011); ArXiv: 1009.2694v2 
 

4.  Singular behaviour of the Laplace operator in spherical 

coordinates; 

http://arxiv.org/abs/1001.3285
http://arxiv.org/ps/1001.3285
http://arxiv.org/pdf/1001.3285
http://au.arxiv.org/abs/1001.3285
http://br.arxiv.org/abs/1001.3285
http://cn.arxiv.org/abs/1001.3285
http://de.arxiv.org/abs/1001.3285
http://es.arxiv.org/abs/1001.3285
http://fr.arxiv.org/abs/1001.3285
http://il.arxiv.org/abs/1001.3285
http://in.arxiv.org/abs/1001.3285
http://it.arxiv.org/abs/1001.3285
http://jp.arxiv.org/abs/1001.3285
http://kr.arxiv.org/abs/1001.3285
http://ru.arxiv.org/abs/1001.3285
http://tw.arxiv.org/abs/1001.3285
http://uk.arxiv.org/abs/1001.3285
http://za.arxiv.org/abs/1001.3285
http://aps.arxiv.org/abs/1001.3285
http://lanl.arxiv.org/abs/1001.3285
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:1001.3285
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Khelashvili%2C%20Anzor%20A%2E%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Nadareishvili%2C%20Teimuraz%20P%2E%22
http://www.slac.stanford.edu/spires/find/hep/www?key=8589666&FORMAT=WWWBRIEFLATEX
http://www.slac.stanford.edu/spires/find/hep/www?key=8589666&FORMAT=WWWBRIEFLATEX2
http://www.slac.stanford.edu/spires/find/hep/www?key=8589666&FORMAT=WWWBRIEFHARVMAC
http://www.slac.stanford.edu/spires/find/hep/www?key=8589666&FORMAT=WWWBRIEFBIBTEX
http://arxiv.org/abs/1002.1278
http://arxiv.org/ps/1002.1278
http://arxiv.org/pdf/1002.1278
http://au.arxiv.org/abs/1002.1278
http://br.arxiv.org/abs/1002.1278
http://cn.arxiv.org/abs/1002.1278
http://de.arxiv.org/abs/1002.1278
http://es.arxiv.org/abs/1002.1278
http://fr.arxiv.org/abs/1002.1278
http://il.arxiv.org/abs/1002.1278
http://in.arxiv.org/abs/1002.1278
http://it.arxiv.org/abs/1002.1278
http://jp.arxiv.org/abs/1002.1278
http://kr.arxiv.org/abs/1002.1278
http://ru.arxiv.org/abs/1002.1278
http://tw.arxiv.org/abs/1002.1278
http://uk.arxiv.org/abs/1002.1278
http://za.arxiv.org/abs/1002.1278
http://aps.arxiv.org/abs/1002.1278
http://lanl.arxiv.org/abs/1002.1278
http://www.slac.stanford.edu/spires/find/hep/www?eprint=arXiv:1002.1278
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Khelashvili%2C%20Anzor%20A%2E%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Nadareishvili%2C%20Teimuraz%20P%2E%22
http://www.slac.stanford.edu/spires/find/inst/www?icncp=Tbilisi+State+U.
http://www.slac.stanford.edu/spires/find/inst/www?icncp=Georgian+U.+of+Patriarchy
http://www.slac.stanford.edu/spires/find/hep/www?key=8526311&FORMAT=WWWBRIEFLATEX
http://www.slac.stanford.edu/spires/find/hep/www?key=8526311&FORMAT=WWWBRIEFLATEX2
http://www.slac.stanford.edu/spires/find/hep/www?key=8526311&FORMAT=WWWBRIEFHARVMAC
http://www.slac.stanford.edu/spires/find/hep/www?key=8526311&FORMAT=WWWBRIEFBIBTEX
http://arxiv.org/abs/1001.3285
http://arxiv.org/ps/1001.3285
http://arxiv.org/pdf/1001.3285
http://au.arxiv.org/abs/1001.3285
http://br.arxiv.org/abs/1001.3285
http://cn.arxiv.org/abs/1001.3285
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http://es.arxiv.org/abs/1001.3285
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  Anzor A. Khelashvili, Teimuraz P. Nadareishvili, (Tbilisi State U. & 

Georgian U. of Patriarchy) . Bulletin of the Georgian Nat.Acad. of 

Science (Moambe), 6,68(2012),  ArXiv: 1102, 1185v2. 

 

5. Laplacian in polar coordinates, regular singular function 

algebra, snd theory of distributions  

Y.C. Cantelaube and A.L.Khelif.   (sounds as ...)  

Journ. of Math.Physics, 51, 053518 May (2010) 

6. Solutions of the Schrodinger equation, boundary condition at 

the origin, and the Theory of distributions. 

Y.C. Cantelaube; ArXiv:1203.0551v1; [math-ph] , March 5, 2012. 

 

In the last two papers the problem is formulated as the 

difference between spaces R(n) and R(n)/{0} from the positions 

of generalised functions or distribution theory.  

 

You  see that the two groups publish papers almost parallel of each others. 

The  last authors mentioned that : 

“ In no handbook of quantum mechanics (no article in our knowledge) the radial 

equation is derived from SE by taking the Laplacians of   and  R r  in the sence 

of distributions as it is required, but in the sense of function” 

 

Now there appears several citations on our papers. 

 

    Because all information is concentrated in the Laplace operator, we begin 

by consideration  the Laplace equation in the vacuum (elecrostatic equation).   

 

 

 

 

http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Khelashvili%2C%20Anzor%20A%2E%22
http://www.slac.stanford.edu/spires/find/wwwhepau/wwwscan?rawcmd=fin+%22Nadareishvili%2C%20Teimuraz%20P%2E%22
http://www.slac.stanford.edu/spires/find/inst/www?icncp=Tbilisi+State+U.
http://www.slac.stanford.edu/spires/find/inst/www?icncp=Georgian+U.+of+Patriarchy
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1.                      The Laplace equation        

 

                 

Let us consider the Laplace equation in vacuum  

                              
  02  r



                                                                                                

(8) 

which in Cartesian coordinates has the form  

                     
   

2 2 2
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2 2 2
, , 0x y z

x y z
 

   
     
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r

                                                

(9) 

   Last equation may be solved simply by separation of variables. The solution 

has the form [9] 

                                   
  zyixi eeezyx

22

,,



                                        

(10) 

Clearly the solution is regular everywhere and at the origin is  

                                

  const0
                                                                                

(11) 

   There are another forms of solution of Eq.(9) depending on alternate ways 

of separation, but all of them gives the constant values at the origin. 

   Now, let us find the spherically symmetric solution. The corresponding 

equation is written as [Feynmann, 10] 
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(12) 

     Certainly, it was possible to pass to spherical coordinates in Eq. (9) and 

take  zero angular  momentum 
0l 

 .  We arrive again to the Eq. (12). 

    The operator in parenthesis of Eq. (12) often is rewritten as ([R.Feynmann], 

Ch.20, [11] etc.) 

                             

 
2

2

1 d
r

r dr


                                                                                                       

(13) 

Correspondingly the Eq. (12) takes the form 
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2

2

1
0

d
r

r dr
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(13a) 

the solution of which is 

                                  
  barrru  

                                                                                     

(14) 

But, determining from here the  function 

                               r

b
a 

                                                                                                          

(15) 
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does not obey to Eq. (12), because  
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(16) 

i.e. the function (15) is the solution everywhere except the origin of 

coordinates. It does not satisfy to the boundary value (11)  as well.  

   What happens? It seems that we made an illegal action somewhere (see,  

R. Feynmann).  

   It is possible to consider this problem by another way also, namely, 

substitute the expression  

                                  r

ru
r

)(
)( 

                                           

(17) 

into the Eq.(12) in order to remove the first derivative term. Then we obtain  
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(18) 

The last term canceles the first derivative in the first parenthesis and there 

remains  
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the second term is zero by naive calculation. But really, according to Eq. (16), 

it follows 

                     

     
2

3

2

1
4 0

d u
u r

r dr
 r

                                                                           

(20) 

The appearance of the delta function is unexpected. Comparing this one with 

Eq. (13) we conclude that the representation of the Laplace operator in the 

form (13) is not valid everywhere. The correct form is 

                                
     

2 2
3

2 2

2 1
4

d d d
r r

dr r dr r dr
    r

                                         

The last term is not zero! 

This expression defines the form of the Laplasian  precisely everywhere 

including the origin of coordinates.  

   By unknown for us reasons  this simple fact stayed unnoted till now and in 

all papers as well as in all books the expession (13) was used. Even in 

Weinberg’s book.  As we made clear up above, in this case the obtained 

solution (15) looks like if there is a point source at the origin. However it is not 

so – mathematic reason is that in spherical coordinates the point  0r 
   

is absent. The Jacobian of transformation to spherical coordinates has a form  

sin2rJ       and is singular at points 0r  and  

 0,1,2,...n n  
 

   Singularity in angle is eliminated by requirements of continuity and 

uniquiness, which lead to spherical harmonics   ,m

l .    As regards of the 

radial variable  r  there is no such restriction for it. Mathematicians consider 
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0r 
  strictly. Then all is OK. But in the full 3-dim. equation we 

need behaviour everywhere, including the origin. 

Therefore if we want to derive the solution legimitated everywhere, we are 

forced to include the delta function in consideration. It seems so that,in 

potential problems, such as e.g. in the Schrodinger equation or  another wave 

equations, where   the Laplacian presents, together with the considered 

potentials we must add the 
(3) ( ) r  potential.  It is physically non-sense, of 

course. 

 

 

   The question is: how to formulate the problem so that to remain all results 

derived earlier for for the central potentials with the aid of traditional radial 

equation (5) containing the second derivative only? One of the reasonable way 

is the following: Because  in spherical coordinates  
  

 
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3

4 r

r
r




 


, the Eq. 

(20) can be reduced to  
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dr
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                                                                              (22) 

or  

                          
  0)0(

2

2

 ru
dr

ud
r 

                                                                   (23) 

    Let us require that the additional term does not present, i.e. 

                                               0)0( u                                                                             (24) 
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Moreover the delta function be “overcome” (will be killed) if at least  

                                       

rru
r




)(lim
0                                                                            

(25) 

Then, owing to the relation   0rr , the extra term falls out and the 

standard equation (13) remains. Let us look what the Eq. (24) gives in above 

considered solution (14). Requiring (24) it follows 0b , i.e. aru   and  

  constar  . Hence we obtain  the correct consisting with the 

full equation (8) value (11). It is consisting also with the real physical picture.  

Electric potential in vacuum is constant 

Appearance of this condition is purely geometrical  ( not a dynamical)  

artefact.  

   Now, what happens in the Schrodinger equation 

 

2. The radial Schrodinger equation 

As an example  let us consider the radial Schrodinger equation 
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12
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
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R

dr
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rdr

d
                                          

(26) 

After the substitution  

                                  r

ru
rR

)(
)( 

                                              

(27) 
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according to abovementioned about the Laplace operator we get  

                           

   
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 
                

(28) 

To single out the true singularity let us integrate by dr in a sphere of small 

radius  a .  We derive 

     

 
       

aaa
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r

000

2
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0)(20
)(

1         

(29) 

From here we determine  

       

 
     

aaa

rdrrurVmEdr
r

ru
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rud
ru

000
2

2

)(2
)(

1)0(                        

(30) 

Because of smallness of  a   substitute here the asymptotic form of wave 

function at the origin                        

                                       
  s

r

rru 
0

                                (31) 

and  the potential as 

                                 0;
0




n
r

g
rV

n
r                                                                                   (32) 

Then the integration in Eq. (30)  may be performed simply and we obtain  
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

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



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          (33) 

We must remove the extra term from Eq.(23), because otherwise we do not get 

the usual form of radial equation (5).  

      If we retain  0u  in Eq. (28) then there are 3 possible values for it: 

 0 0u   ;  0u finite  and  0u    . Note that all the enumerated 

values do not contradict to normalisation condition at the origin  

2

0

a

u dr   , but not all of them  are permissible. 

The first value is prefarable among them, because finite   0u  will give 

const
R

r
  at the origin 

and in Eq. (26) the delta function reappears again. Therefore this solution will 

not obey to the full Schrodinger equation. The last value,    0u   of 

course is unacceptible also, because to have an infinite number in equation  

has no sense 

There remains only one reasonable value, Eq. (24). Moreover this restriction 

takes place in spite of the potential is regular or singular. Singularity of the 

potential effects only on the law of turning   ru  to zero. This follows from 

the relation (29) as all the exponents here must be positive. We’ll have 

therefore  

                           02,02,0  nsss                                                               

moreover        1s    
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            It follows from the last inequality that when the index of singularity of 

potential n increases the index of wave function behaviour must also increase. 

Moreover we must have 1s  in order   the wave function at the origin 

“overcome” the delta function in the term    rru  .   Interesting enogh 

that If in addition  if we require that this production be a distribution, it 

become necessary that  ru  be an infinitely    smooth function [12,13], i.e. in 

Eq.(31) we must have  1s  and are   digital numbers. 

      Thus the wave function must be sufficiently regular one at the origin. 

This conclusion may have many far reaching consequences. 

 

 

  Conclusions 

 

1. We have found a singularity like the Dirac delta function in process of 

reduction the Laplace equation in spherical polar coordinates, that was 

not mentioned  earlier. The cornerstone in our consideration is an idea 

of Dirac that the solution of the radial equation at the same time must 

be a solution of the full 3-dimensional equation.  

2. On the basis of this observation we have proved that for removing this 

extra term from the radial equation it is necessary and sufficient to 

impose the reduced radial wave function by definite restriction, which 

has a form of the boundary condition at the origin , eq. (24). Moreover 

this condition is independent of whether the potential in the 

Schrodinger equation is regular or singular. The behaviour of singular 

potential influences only the character of turning to zero of the radial 

function at the origin.  

3. As regards of the full radial function )(rR
,  
 its equation is compatible 

with the primary (3-dimensional) equation (1) if the restriction 
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 0
lim 0
r

rR



  

 is satisfied. Therefore, to avoid the misunderstandings, it is preferable 

to use the equations (26) and (44), for  R r
   

 

 

 

It was mentioned in Y.C.Cantelaube et al, arXiv: 1203.0551  

that there is no necessity in putting  the boundary condition (24), but instead  

it is sufficient to require regularity of the solutions of the full radial equation. 

May be it is a mathematical thinness , we agree. However, it is easy to see 

from the relation (27) that this requirement is equivalent to our restriction 

(24).  

4. Let us underline at least that because the Laplacian is encountered in 

many subjects of physics, our observation can be equally extended to all 

such problems. 

   The same takes place in higher dimensions (more than 3) as well. 

 

 

 

 

 

 

Appendicies: 

A)   Regular potentials 
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  0lim 2

0



rVr

r  

                             
 

Solution at the origin  

     
...2,1,0;~ 2

1
1

0
 


lrcrcu ll

r  

2 0c    

B) Weakly singular  (transition)  potential  

 

    
  constVrVr

r



0

2

0
lim

 

Here  0 0V   corresponds to the attraction. Behaviour at the origin  

                 

21 1

2 2
1 2 0

0

1
~ ; 2 0

2

P P

r
u d r d r P l mV

 



 
     

   

 we must have  

1

2
P 

                       

and at the same time  

...3,2,1;2/1  NNP
 

It follows that the second solution in Eq. (38) must be discarded in case of 

attraction. 

 

C) The Klein-Gordon equation 

                               
22m E V r     r r
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Its  radial form is 

                      

 
   

2
22

2 2

12
0

l ld d
m E V R r

dr r dr r

 
       
 

      

Even the Coulomb potential is singular here. Now  

                                                 
0

lim 0
r

rV r


         -     regular                                            

 

                                   
  constVrrV

r



0

0
lim

- singular    

             Now the reduced equation   

                                 
 

 2 2

2

1
0

l l
u E V m u

r

 
      

   

   is not applicable even for repulsive case, since the additional contribution 

for Coulomb potential is quadratic in the coupling constant and is same both 

for attraction and repulsion. 

Therefore this equation may be used for potentials, which are less singular, 

than the Coulomb one.  

Whereas in using of equation for R(r)-function no trubles appear. 

D)     The Yukawa potential 

As a last application of Eq. (21) let us consider the Yukawa potential. 

According to common viepoint (see, e.g. [Feynman],Ch.28) the Yukawa 

potential is a spherically symmetric solution of the wave equation 

(Helmholtz equation) 
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2 2 0         

                                                                                              
 

     By “old” consideration it follows that   

re
K

r







 

 But the correct relation gives  

   32 2 4
r r

re e
e

r r

 
 

 
   r

 

Therefore Yukawa potential is the solution of the wave equation with a source 

term on the RHS: 

                               

   32 2 4 K        r
 

 

But this “source” is not physical (!) 

 

 

 
 

2

2 2

1
2r

l ld
H mV r

dr r


   
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=        

2

2 2 1

1 2

0 0

2 1 1 2
0

1
lim 0

2

r

r

r

R H R r dr
R H R r dr

u r u r u r u r

 






    

 

 

 


